Difference between revisions of "Full Spectrum Laser Cutter"

From Freeside Atlanta
Jump to navigation Jump to search
Line 1: Line 1:
Freeside's "Full Spectrum MLE-40" laser cutter is a Chinese-made "K40" style 40 watt CO2 cutter that has been retrofitted with an Smothieware control board to allow it to run LaserWeb, LaserGRBL, and other software for ease of use and open-source goodness on the hardware and firmware side.
Freeside's Full Spectrum MLE-40 laser cutter is a 40 watt CO2 cutter that has been retrofitted with an arduino uno controller and gShield V5 running GRBL 1.1 firmware to allow it to run LaserWeb, LaserGRBL, and other software for ease of use and open-source goodness on the hardware and firmware side.
[[File:K40 11-26-2018.jpg|thumbnail]]
[[File:Full spectrum cutter.jpg|thumbnail]]
 
 
 




Line 6: Line 9:
-------------------
-------------------
CO2 laser tubes live much happier and and longer lives if kept between 55-70 degrees F! Toss frozen water bottles in the cooling water bucket and keep an eye on that temp. Keep it between cold and kinda-chilly if you're being so cavalier as to not use a thermometer. Also, using distilled water is preferable to tap as a cooling water since tap water can carry an electric charge when it's passing near the 16,000V of the tube and mess with the tube's efficiency/power. Sudden changes in coolant temp may be bad for the tube's life (don't toss a bunch of ice into warm cooling water, it might crack the tube). Above all, if the tube water is anything other than cool to the touch or doesn't look like water you'd be ok drinking, STOP THE CUTTER AND FIX IT.
CO2 laser tubes live much happier and and longer lives if kept between 55-70 degrees F! Toss frozen water bottles in the cooling water bucket and keep an eye on that temp. Keep it between cold and kinda-chilly if you're being so cavalier as to not use a thermometer. Also, using distilled water is preferable to tap as a cooling water since tap water can carry an electric charge when it's passing near the 16,000V of the tube and mess with the tube's efficiency/power. Sudden changes in coolant temp may be bad for the tube's life (don't toss a bunch of ice into warm cooling water, it might crack the tube). Above all, if the tube water is anything other than cool to the touch or doesn't look like water you'd be ok drinking, STOP THE CUTTER AND FIX IT.


Controller
Controller
-------------------
-------------------
The control board is a Smoothieware Smoothieboard
Arduino Uno running GRBL firmware.
http://smoothieware.org/
https://github.com/gnea/grbl
[[File:Cutter_guts.jpg|thumbnail]]
The motor controller is a Syntheos gShield V5 board. Much less fussy and more fault-tolerant than pololu controllers can sometimes be.
https://synthetos.myshopify.com/products/gshield-v5




Motors
Motors
--------
--------
The X and Y motors are 400 steps per rotation nema17 motors. Configure to ~83 steps per mm at 1/8th microsteps.
The X and Y motors are 400 steps per rotation nema17 motors.
 


Wiring
Wiring
---------
---------
*THIS IS OLD, Needs updated for smoothieware board*
[[File:Laser cutter wiring BW.png|thumbnail|wiring diagram]]
[[File:Laser cutter wiring diagram.png|thumbnail|DOCUMENT (not quite) ALL THE WIRING!]]
 


Power supply:
Power supply:
--------------
--------------
*Never run the laser tube above 20mA. Such heavy cutting significantly shorten's the tube's life, and they're expensive. Make multiple cutting passes under 20mA if you need a deeper cut. This is adjusted with the power control dial on top of the cutter as well as in software if you're fancy.
The power supply is a generic 40w CO2 laser cutter power supply. There are many slight differences in these supplies as far as their pin headers,labeling, and pinouts are concerned. They all boil down to having the following pins though: Laser tube -, Mains ground, 2 Mains AC inputs for Live and Neutral, Water flow protection, logic GND, Laser control (FIRE!), 5v, 24v, and "IN" for the center pin of a master laser output max power potentiometer. Moar info at this link: http://donsthings.blogspot.com/2017/01/k40-lps-configuration-and-wiring.html
 
There are two power supplies, a 24vDC 12A supply for the stepper motors, and a high voltage Laser Power Supply. The LPS puts out 24v of it's own, originally to power the steppers, but we've use a dedicated supply for better reliability.
 
 
The laser is powered by a generic 40w CO2 laser cutter power supply. There are many slight differences in these supplies as far as their pin headers, labeling, and pinouts are concerned. They all boil down to having the following pins though: Laser tube negative, Mains ground, 2 Mains AC inputs for Live and Neutral, Water flow protection, logic GND, Laser control (FIRE!), 5v, 24v, and "IN" for the center pin of a master laser output max power potentiometer. Oh, and the big red scary high voltage wire for the ~16Kv to power the tube itself from the flyback transformer. Moar info at this link: http://donsthings.blogspot.com/2017/01/k40-lps-configuration-and-wiring.html


Here's how the current pinout of the laser power supply (often just called LPS) is laid out.
Here's how the current pinout of the laser power supply (often just called LPS) is laid out.
Line 97: Line 94:


[[File:Laser cutter power supply.jpg|thumbnail|CO2 laser power supply pinout]]
[[File:Laser cutter power supply.jpg|thumbnail|CO2 laser power supply pinout]]
 
Specification
    Maximum output voltage: DC 25KV
    Maximum output current: DC 20mA


Software
Software
-----------
-----------
This laser cutter can work with any grbl compatible software, the most common being LaserWeb and Lasergrbl, though others exist, since it's runs on Gcode. As of just getting the machine working lasergrbl seems to be the more approachable software.
This laser cutter can work with any grbl compatible software, the most common being LaserWeb and Lasergrbl, though others exist, since it's runs on Gcode. As of just getting the machine working lasergrbl seems to be the more approachable software.


Software/Firmware considerations
Software/Firmware considerations
Line 108: Line 106:
GRBL is fantastic for controlling CNC, 3D printer, and laser cutter hardware, but it's default uses aren't laser cutters. things with spindles and extruders are what it expects to use by default. To that end you have to edit some stuff to make it understand it's part of a laser cutter.
GRBL is fantastic for controlling CNC, 3D printer, and laser cutter hardware, but it's default uses aren't laser cutters. things with spindles and extruders are what it expects to use by default. To that end you have to edit some stuff to make it understand it's part of a laser cutter.


Smoothieboard config for posterity (accessible from the D:\config.txt file off the smoothieboard
GRBL firmware:
# Smoothieboard configuration file, see http://smoothieware.org/configuring-smoothie
before you upload grbl to an arduino uno (it only works on the uno), you need to edit a couple things to make it play nicely as a laser cutter. (insert stuff from ACRO link in research links for config.h edits)
# NOTE Lines must not exceed 132 characters, and '#' characters mean what follows is ignored
## Robot module configurations : general handling of movement G-codes and slicing into moves
 
# Basic motion configuration
default_feed_rate                            10000            # Default speed (mm/minute) for G1/G2/G3 moves
default_seek_rate                            10000            # Default speed (mm/minute) for G0 moves
mm_per_arc_segment                          0.0              # Fixed length for line segments that divide arcs, 0 to disable
#mm_per_line_segment                        5                # Cut lines into segments this size
mm_max_arc_error                            0.01            # The maximum error for line segments that divide arcs 0 to disable
                                                              # note it is invalid for both the above be 0
                                                              # if both are used, will use largest segment length based on radius
 
# Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions
# See http://smoothieware.org/stepper-motors
alpha_steps_per_mm                          158.2            # Steps per mm for alpha ( X ) stepper
beta_steps_per_mm                            158.2            # Steps per mm for beta ( Y ) stepper
gamma_steps_per_mm                          1600            # Steps per mm for gamma ( Z ) stepper
 
# Planner module configuration : Look-ahead and acceleration configuration
# See http://smoothieware.org/motion-control
acceleration                                500            # Acceleration in mm/second/second.
#z_acceleration                              500              # Acceleration for Z only moves in mm/s^2, 0 uses acceleration which is the default. DO NOT SET ON A DELTA
junction_deviation                          0.05            # See http://smoothieware.org/motion-control#junction-deviation
#z_junction_deviation                        0.0              # For Z only moves, -1 uses junction_deviation, zero disables junction_deviation on z moves DO NOT SET ON A DELTA
 
# Cartesian axis speed limits
x_axis_max_speed                            10000            # Maximum speed in mm/min
y_axis_max_speed                            10000            # Maximum speed in mm/min
z_axis_max_speed                            300              # Maximum speed in mm/min
 
# Stepper module configuration
# Pins are defined as  ports, and pin numbers, appending "!" to the number will invert a pin
# See http://smoothieware.org/pin-configuration and http://smoothieware.org/pinout
alpha_step_pin                              0.4              # Pin for alpha stepper step signal
alpha_dir_pin                                0.5!              # Pin for alpha stepper direction, add '!' to reverse direction
alpha_en_pin                                4.28              # Pin for alpha enable pin
alpha_current                                1.5              # X stepper motor current
alpha_max_rate                              10000.0          # Maximum rate in mm/min


beta_step_pin                                2.1              # Pin for beta stepper step signal
GRBL settings:
beta_dir_pin                                2.2!            # Pin for beta stepper direction, add '!' to reverse direction
Once GRBL has been loaded onto the arduino and you can talk to it on the serial monitor send it the following commands:
beta_en_pin                                  2.0            # Pin for beta enable
$32=1 (this tells it to be a laser cutter)
beta_current                                1.5              # Y stepper motor current
$100=83 (X axis motor steps/mm of distance moved)
beta_max_rate                                10000.0          # Maxmimum rate in mm/min
$101=83 (y axis motor steps/mm of distance moved)
 
gamma_step_pin                              2.2              # Pin for gamma stepper step signal
gamma_dir_pin                                0.20            # Pin for gamma stepper direction, add '!' to reverse direction
gamma_en_pin                                0.19            # Pin for gamma enable
gamma_current                                1.5              # Z stepper motor current
gamma_max_rate                              10000.0            # Maximum rate in mm/min
 
 
 
## Extruder module configuration
# See http://smoothieware.org/extruder
extruder.hotend.enable                          false          # Whether to activate the extruder module at all. All configuration is ignored if false
extruder.hotend.steps_per_mm                    140          # Steps per mm for extruder stepper
extruder.hotend.default_feed_rate              600          # Default rate ( mm/minute ) for moves where only the extruder moves
extruder.hotend.acceleration                    500          # Acceleration for the stepper motor mm/sec²
extruder.hotend.max_speed                      50            # Maximum speed in mm/s
 
extruder.hotend.step_pin                        2.3          # Pin for extruder step signal
extruder.hotend.dir_pin                        0.22          # Pin for extruder dir signal ( add '!' to reverse direction )
extruder.hotend.en_pin                          0.21          # Pin for extruder enable signal
 
# Extruder offset
#extruder.hotend.x_offset                        0            # X offset from origin in mm
#extruder.hotend.y_offset                        0            # Y offset from origin in mm
#extruder.hotend.z_offset                        0            # Z offset from origin in mm
 
# Firmware retract settings when using G10/G11, these are the defaults if not defined, must be defined for each extruder if not using the defaults
#extruder.hotend.retract_length                  3            # Retract length in mm
#extruder.hotend.retract_feedrate                45          # Retract feedrate in mm/sec
#extruder.hotend.retract_recover_length          0            # Additional length for recover
#extruder.hotend.retract_recover_feedrate        8            # Recover feedrate in mm/sec (should be less than retract feedrate)
#extruder.hotend.retract_zlift_length            0            # Z-lift on retract in mm, 0 disables
#extruder.hotend.retract_zlift_feedrate          6000        # Z-lift feedrate in mm/min (Note mm/min NOT mm/sec)
 
delta_current                                    1.5          # First extruder stepper motor current
 
# Second extruder module configuration
#extruder.hotend2.enable                        false        # Whether to activate the extruder module at all. All configuration is ignored if false
#extruder.hotend2.steps_per_mm                  140          # Steps per mm for extruder stepper
#extruder.hotend2.default_feed_rate              600          # Default rate ( mm/minute ) for moves where only the extruder moves
#extruder.hotend2.acceleration                  500          # Acceleration for the stepper motor, as of 0.6, arbitrary ratio
#extruder.hotend2.max_speed                      50          # mm/s
 
#extruder.hotend2.step_pin                      2.8          # Pin for extruder step signal
#extruder.hotend2.dir_pin                        2.13        # Pin for extruder dir signal ( add '!' to reverse direction )
#extruder.hotend2.en_pin                        4.29        # Pin for extruder enable signal
 
#extruder.hotend2.x_offset                      0            # x offset from origin in mm
#extruder.hotend2.y_offset                      25.0        # y offset from origin in mm
#extruder.hotend2.z_offset                      0            # z offset from origin in mm
 
#epsilon_current                                1.5          # Second extruder stepper motor current
 
 
## Laser module configuration
# See http://smoothieware.org/laser
laser_module_enable                          true          # Whether to activate the laser module at all
laser_module_pwm_pin                          3.26            # This pin will be PWMed to control the laser.
                                                              # Only pins 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 1.18, 1.20, 1.21, 1.23, 1.24, 1.26, 3.25 and 3.26
                                                              # can be used since laser requires hardware PWM, see http://smoothieware.org/pinout
#laser_module_ttl_pin                       1.30            # This pin turns on when the laser turns on, and off when the laser turns off.
#laser_module_maximum_power                  1.0            # This is the maximum duty cycle that will be applied to the laser
#laser_module_minimum_power                  0.0            # This is a value just below the minimum duty cycle that keeps the laser
                                                              # active without actually burning.
#laser_module_default_power                  0.8            # This is the default laser power that will be used for cuts if a power has not been specified.  The value is a scale between
                                                              # the maximum and minimum power levels specified above
#laser_module_pwm_period                      20              # This sets the pwm frequency as the period in microseconds
 
## Temperature control configuration
# See http://smoothieware.org/temperaturecontrol
 
# First hotend configuration
temperature_control.hotend.enable            false            # Whether to activate this ( "hotend" ) module at all.
temperature_control.hotend.thermistor_pin    0.23            # Pin for the thermistor to read
temperature_control.hotend.heater_pin        2.7              # Pin that controls the heater, set to nc if a readonly thermistor is being defined
temperature_control.hotend.thermistor        EPCOS100K        # See http://smoothieware.org/temperaturecontrol#toc5
#temperature_control.hotend.beta            4066            # Or set the beta value
temperature_control.hotend.set_m_code        104              # M-code to set the temperature for this module
temperature_control.hotend.set_and_wait_m_code 109            # M-code to set-and-wait for this module
temperature_control.hotend.designator        T                # Designator letter for this module
#temperature_control.hotend.max_temp        300              # Set maximum temperature - Will prevent heating above 300 by default
#temperature_control.hotend.min_temp        0                # Set minimum temperature - Will prevent heating below if set
 
# Safety control is enabled by default and can be overidden here, the values show the defaults
# See http://smoothieware.org/temperaturecontrol#runaway
#temperature_control.hotend.runaway_heating_timeout      900  # How long it can take to heat up, max is 2040 seconds.
#temperature_control.hotend.runaway_cooling_timeout        0  # How long it can take to cool down if temp is set lower, max is 2040 seconds
#temperature_control.hotend.runaway_range                20  # How far from the set temperature it can wander, max setting is 63°C
 
# PID configuration
# See http://smoothieware.org/temperaturecontrol#pid
#temperature_control.hotend.p_factor        13.7            # P ( proportional ) factor
#temperature_control.hotend.i_factor        0.097            # I ( integral ) factor
#temperature_control.hotend.d_factor        24              # D ( derivative ) factor
 
#temperature_control.hotend.max_pwm          64              # Max pwm, 64 is a good value if driving a 12v resistor with 24v.
 
# Second hotend configuration
#temperature_control.hotend2.enable            true          # Whether to activate this ( "hotend" ) module at all.
#temperature_control.hotend2.thermistor_pin    0.25          # Pin for the thermistor to read
#temperature_control.hotend2.heater_pin        1.23          # Pin that controls the heater
#temperature_control.hotend2.thermistor        EPCOS100K      # See http://smoothieware.org/temperaturecontrol#thermistor
##temperature_control.hotend2.beta            4066          # or set the beta value
#temperature_control.hotend2.set_m_code        104            # M-code to set the temperature for this module
#temperature_control.hotend2.set_and_wait_m_code 109          # M-code to set-and-wait for this module
#temperature_control.hotend2.designator        T1            # Designator letter for this module
 
#temperature_control.hotend2.p_factor          13.7          # P ( proportional ) factor
#temperature_control.hotend2.i_factor          0.097          # I ( integral ) factor
#temperature_control.hotend2.d_factor          24            # D ( derivative ) factor
 
#temperature_control.hotend2.max_pwm          64              # Max pwm, 64 is a good value if driving a 12v resistor with 24v.
 
temperature_control.bed.enable              false            # Whether to activate this ( "hotend" ) module at all.
temperature_control.bed.thermistor_pin      0.24            # Pin for the thermistor to read
temperature_control.bed.heater_pin          2.5              # Pin that controls the heater
temperature_control.bed.thermistor          Honeywell100K    # See http://smoothieware.org/temperaturecontrol#thermistor
#temperature_control.bed.beta                3974            # Or set the beta value
temperature_control.bed.set_m_code          140              # M-code to set the temperature for this module
temperature_control.bed.set_and_wait_m_code  190              # M-code to set-and-wait for this module
temperature_control.bed.designator          B                # Designator letter for this module
 
# Bang-bang ( simplified ) control
# See http://smoothieware.org/temperaturecontrol#bang-bang
#temperature_control.bed.bang_bang          false            # Set to true to use bang bang control rather than PID
#temperature_control.bed.hysteresis          2.0              # Set to the temperature in degrees C to use as hysteresis
 
## Switch modules
# See http://smoothieware.org/switch
 
# Switch module for fan control
switch.fan.enable                            false            # Enable this module
switch.fan.input_on_command                  M106            # Command that will turn this switch on
switch.fan.input_off_command                M107            # Command that will turn this switch off
switch.fan.output_pin                        2.6              # Pin this module controls
switch.fan.output_type                      pwm              # PWM output settable with S parameter in the input_on_comand
#switch.fan.max_pwm                          255              # Set max pwm for the pin default is 255
 
#switch.misc.enable                          true            # Enable this module
#switch.misc.input_on_command                M42              # Command that will turn this switch on
#switch.misc.input_off_command              M43              # Command that will turn this switch off
#switch.misc.output_pin                      2.4              # Pin this module controls
#switch.misc.output_type                    digital          # Digital means this is just an on or off pin
 
#switch.bltouch.enable                    true        #
#switch.bltouch.output_pin                2.4          # sw pwm can use any digital pin
#switch.bltouch.input_on_command          M280        #
#switch.bltouch.input_off_command        M281        #
#switch.bltouch.output_type              swpwm        # sw pwm must be low frequency
#switch.bltouch.pwm_period_ms            20          # 50Hz
#switch.bltouch.startup_state            false        # start up in the stow state
#switch.bltouch.startup_value            7.43        # On boot it will go into stow mode, also set with the M281
#switch.bltouch.default_on_value          3.3          # if M280 is issued without S this is the value it will set it to
 
 
## Temperatureswitch
# See http://smoothieware.org/temperatureswitch
# Automatically toggle a switch at a specified temperature. Different ones of these may be defined to monitor different temperatures and switch different swithxes
# Useful to turn on a fan or water pump to cool the hotend
#temperatureswitch.hotend.enable              true            #
#temperatureswitch.hotend.designator          T              # first character of the temperature control designator to use as the temperature sensor to monitor
#temperatureswitch.hotend.switch              misc            # select which switch to use, matches the name of the defined switch
#temperatureswitch.hotend.threshold_temp      60.0            # temperature to turn on (if rising) or off the switch
#temperatureswitch.hotend.heatup_poll        15              # poll heatup at 15 sec intervals
#temperatureswitch.hotend.cooldown_poll      60              # poll cooldown at 60 sec intervals
 
## Endstops
# See http://smoothieware.org/endstops
endstops_enable                              true            # The endstop module is enabled by default and can be disabled here
#corexy_homing                              false            # Set to true if homing on a hbot or corexy
alpha_min_endstop                            1.29^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
#alpha_max_endstop                          1.28            # Pin to read max endstop, uncomment this and comment the above if using max endstops
alpha_homing_direction                      home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
alpha_min                                    -5                # This gets loaded as the current position after homing when home_to_min is set
alpha_max                                    335              # This gets loaded as the current position after homing when home_to_max is set
#beta_min_endstop                            1.27^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
beta_max_endstop                            1.26^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
beta_homing_direction                        home_to_max      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
beta_min                                    -5                # This gets loaded as the current position after homing when home_to_min is set
beta_max                                    215              # This gets loaded as the current position after homing when home_to_max is set
gamma_min_endstop                            1.24            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
#gamma_max_endstop                          1.25            # Pin to read max endstop, uncomment this and comment the above if using max endstops
gamma_homing_direction                      home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
gamma_min                                    0                # This gets loaded as the current position after homing when home_to_min is set
gamma_max                                    200              # This gets loaded as the current position after homing when home_to_max is set
 
alpha_max_travel                            360              # Max travel in mm for alpha/X axis when homing
beta_max_travel                              240              # Max travel in mm for beta/Y axis when homing
gamma_max_travel                            500              # Max travel in mm for gamma/Z axis when homing
 
# Optional enable limit switches, actions will stop if any enabled limit switch is triggered
alpha_limit_enable                          true            # Set to true to enable X min and max limit switches
beta_limit_enable                          true            # Set to true to enable Y min and max limit switches
#gamma_limit_enable                          false            # Set to true to enable Z min and max limit switches
 
# Endstops home at their fast feedrate first, then once the endstop is found they home again at their slow feedrate for accuracy
alpha_fast_homing_rate_mm_s                  1200 # Alpha/X fast homing feedrate in mm/second
alpha_slow_homing_rate_mm_s                  800              # Alpha/X slow homing feedrate in mm/second
beta_fast_homing_rate_mm_s                  1200 # Beta/Y  fast homing feedrate in mm/second
beta_slow_homing_rate_mm_s                  800              # Beta/Y  slow homing feedrate in mm/second
gamma_fast_homing_rate_mm_s                  4                # Gamma/Z fast homing feedrate in mm/second
gamma_slow_homing_rate_mm_s                  2                # Gamma/Z slow homing feedrate in mm/second
 
alpha_homing_retract_mm                      2                # Distance to retract from the endstop after it is hit for alpha/X
beta_homing_retract_mm                      2                # Distance to retract from the endstop after it is hit for beta/Y
gamma_homing_retract_mm                      1                # Distance to retract from the endstop after it is hit for gamma/Z
 
# Optional order in which axis will home, default is they all home at the same time,
# If this is set it will force each axis to home one at a time in the specified order
homing_order                                  XY              # X axis followed by Y
move_to_origin_after_home                    true            # Move XY to 0,0 after homing
#endstop_debounce_count                      100              # Uncomment if you get noise on your endstops, default is 100
#endstop_debounce_ms                          1                # Uncomment if you get noise on your endstops, default is 1 millisecond debounce
#home_z_first                                true            # Uncomment and set to true to home the Z first, otherwise Z homes after XY
 
# End of endstop config
# Delete the above endstop section and uncomment next line and copy and edit Snippets/abc-endstop.config file to enable endstops for ABC axis
#include abc-endstop.config
 
## Z-probe
# See http://smoothieware.org/zprobe
zprobe.enable                                false          # Set to true to enable a zprobe
zprobe.probe_pin                            1.28!^          # Pin probe is attached to, if NC remove the !
zprobe.slow_feedrate                        5              # Mm/sec probe feed rate
#zprobe.debounce_ms                          1              # Set if noisy
zprobe.fast_feedrate                        100            # Move feedrate mm/sec
zprobe.probe_height                          5              # How much above bed to start probe
#gamma_min_endstop                          nc              # Normally 1.28. Change to nc to prevent conflict,
 
# Levelling strategy
# Example for 3-point levelling strategy, see wiki documentation for other strategies
#leveling-strategy.three-point-leveling.enable        true        # a leveling strategy that probes three points to define a plane and keeps the Z parallel to that plane
#leveling-strategy.three-point-leveling.point1        100.0,0.0  # the first probe point (x,y) optional may be defined with M557
#leveling-strategy.three-point-leveling.point2        200.0,200.0 # the second probe point (x,y)
#leveling-strategy.three-point-leveling.point3        0.0,200.0  # the third probe point (x,y)
#leveling-strategy.three-point-leveling.home_first    true        # home the XY axis before probing
#leveling-strategy.three-point-leveling.tolerance      0.03        # the probe tolerance in mm, anything less that this will be ignored, default is 0.03mm
#leveling-strategy.three-point-leveling.probe_offsets  0,0,0      # the probe offsets from nozzle, must be x,y,z, default is no offset
#leveling-strategy.three-point-leveling.save_plane    false      # set to true to allow the bed plane to be saved with M500 default is false
 
## Panel
# See http://smoothieware.org/panel
# Please find your panel on the wiki and copy/paste the right configuration here
panel.enable                                false            # Set to true to enable the panel code
 
# Example for reprap discount GLCD
# on glcd EXP1 is to left and EXP2 is to right, pin 1 is bottom left, pin 2 is top left etc.
# +5v is EXP1 pin 10, Gnd is EXP1 pin 9
#panel.lcd                                  reprap_discount_glcd    #
#panel.spi_channel                          0                # SPI channel to use  ; GLCD EXP1 Pins 3,5 (MOSI, SCLK)
#panel.spi_cs_pin                            0.16              # SPI chip select    ; GLCD EXP1 Pin 4
#panel.encoder_a_pin                        3.25!^            # Encoder pin        ; GLCD EXP2 Pin 3
#panel.encoder_b_pin                        3.26!^            # Encoder pin        ; GLCD EXP2 Pin 5
#panel.click_button_pin                      1.30!^            # Click button        ; GLCD EXP1 Pin 2
#panel.buzz_pin                              1.31              # Pin for buzzer      ; GLCD EXP1 Pin 1
#panel.back_button_pin                      2.11!^            # Back button        ; GLCD EXP2 Pin 8
 
panel.menu_offset                            0                # Some panels will need 1 here
 
panel.alpha_jog_feedrate                    6000              # X jogging feedrate in mm/min
panel.beta_jog_feedrate                      6000              # Y jogging feedrate in mm/min
panel.gamma_jog_feedrate                    200              # Z jogging feedrate in mm/min
 
panel.hotend_temperature                    185              # Temp to set hotend when preheat is selected
panel.bed_temperature                        60                # Temp to set bed when preheat is selected
 
## Custom menus : Example of a custom menu entry, which will show up in the Custom entry.
# NOTE _ gets converted to space in the menu and commands, | is used to separate multiple commands
custom_menu.power_on.enable                true              #
custom_menu.power_on.name                  Power_on          #
custom_menu.power_on.command              M80              #
 
custom_menu.power_off.enable              true              #
custom_menu.power_off.name                Power_off        #
custom_menu.power_off.command              M81              #
 
 
## Network settings
# See http://smoothieware.org/network
network.enable                              false            # Enable the ethernet network services
network.webserver.enable                    true            # Enable the webserver
network.telnet.enable                        true            # Enable the telnet server
network.ip_address                          auto            # Use dhcp to get ip address
# Uncomment the 3 below to manually setup ip address
#network.ip_address                          192.168.3.222  # The IP address
#network.ip_mask                              255.255.255.0  # The ip mask
#network.ip_gateway                          192.168.3.1    # The gateway address
#network.mac_override                        xx.xx.xx.xx.xx.xx  # Override the mac address, only do this if you have a conflict
 
## System configuration
# Serial communications configuration ( baud rate defaults to 9600 if undefined )
# For communication over the UART port, *not* the USB/Serial port
uart0.baud_rate                              115200          # Baud rate for the default hardware ( UART ) serial port
 
second_usb_serial_enable                    false            # This enables a second USB serial port
#leds_disable                                true            # Disable using leds after config loaded
#play_led_disable                            true            # Disable the play led
 
# Kill button maybe assigned to a different pin, set to the onboard pin by default
# See http://smoothieware.org/killbutton
kill_button_enable                          true            # Set to true to enable a kill button
kill_button_pin                              3.25^            # Kill button pin. default is same as pause button 2.12 (2.11 is another good choice)
 
#msd_disable                                false            # Disable the MSD (USB SDCARD), see http://smoothieware.org/troubleshooting#disable-msd
#dfu_enable                                  false            # For linux developers, set to true to enable DFU
 
# Only needed on a smoothieboard
# See http://smoothieware.org/currentcontrol
currentcontrol_module_enable                true            # Control stepper motor current via the configuration file
 
 
[[File:Grbl config full spectrum.png|thumbnail|NOTE: 80 steps/mm is more accurate than this image's settings]]


Software settings:
Software settings:
(insert bed size)
(insert bed size)
(insert other software settings)
May need to add "M4" or "M3" commands to laserweb start settings to enable laser use?
History
----------
This particular laser cutter was given to Freeside Atlanta by the fine folks at Decatur Makers around October 2018, after an apparent long service life. The machine was destined for the scrap bin otherwise, with a blown power supply (common among K40 cutters with lots of hours) and no controller board. The serial number, top window size, paint scheme, etc... seem to point to the machine being made around 2012. On the good side, the motors, wiring, and chassis all seemed in good shape, and the laser tube is supposed to be an upgraded tube with very few if any hours on it at the time Freeside got it.
Ronnie Hinton and Raul Hernandez did the initial rebuild with a GRBLshield and arduino motor controller, and later persons unknown (Maybe Scott, Adam, and/or Roan?) rebuild it with a Smoothieboard.


Research Links
Research Links
-----------------
-----------------
[[File:Freeside laser etch logo.jpg|thumbnail|The first thing successfully etched on the K40 since it's resurrection]]
https://www.youtube.com/watch?v=1ioctbN9JV8&t=335s
https://www.youtube.com/watch?v=1ioctbN9JV8&t=335s
DIY Arduino CNC Machine with GRBL Shield - Setup Tutorial!


https://github.com/synthetos/grblShield/wiki/Using-grblShield
https://github.com/synthetos/grblShield/wiki/Using-grblShield
Using grblShield/gShield board


https://github.com/LaserWeb/deprecated-LaserWeb3/wiki/Firmware:-GRBL-1.1
https://github.com/LaserWeb/deprecated-LaserWeb3/wiki/Firmware:-GRBL-1.1
Config help


https://openbuilds.com/builds/k40-acro-conversion.6592/
https://openbuilds.com/builds/k40-acro-conversion.6592/
Someone with a very similar hardware setup, even if the physical layout is different. Good documentation.
http://donsthings.blogspot.com/2016/11/the-k40-total-conversion.html
Don's Laser Cutter Things - A great in-depth resource about converting K40 cutters for GRBL based controllers.

Revision as of 04:37, 26 November 2018

Freeside's Full Spectrum MLE-40 laser cutter is a 40 watt CO2 cutter that has been retrofitted with an arduino uno controller and gShield V5 running GRBL 1.1 firmware to allow it to run LaserWeb, LaserGRBL, and other software for ease of use and open-source goodness on the hardware and firmware side.

Full spectrum cutter.jpg



COOLING!!!


CO2 laser tubes live much happier and and longer lives if kept between 55-70 degrees F! Toss frozen water bottles in the cooling water bucket and keep an eye on that temp. Keep it between cold and kinda-chilly if you're being so cavalier as to not use a thermometer. Also, using distilled water is preferable to tap as a cooling water since tap water can carry an electric charge when it's passing near the 16,000V of the tube and mess with the tube's efficiency/power. Sudden changes in coolant temp may be bad for the tube's life (don't toss a bunch of ice into warm cooling water, it might crack the tube). Above all, if the tube water is anything other than cool to the touch or doesn't look like water you'd be ok drinking, STOP THE CUTTER AND FIX IT.

Controller


Arduino Uno running GRBL firmware. https://github.com/gnea/grbl

Cutter guts.jpg

The motor controller is a Syntheos gShield V5 board. Much less fussy and more fault-tolerant than pololu controllers can sometimes be. https://synthetos.myshopify.com/products/gshield-v5


Motors


The X and Y motors are 400 steps per rotation nema17 motors.

Wiring


wiring diagram

Power supply:


The power supply is a generic 40w CO2 laser cutter power supply. There are many slight differences in these supplies as far as their pin headers,labeling, and pinouts are concerned. They all boil down to having the following pins though: Laser tube -, Mains ground, 2 Mains AC inputs for Live and Neutral, Water flow protection, logic GND, Laser control (FIRE!), 5v, 24v, and "IN" for the center pin of a master laser output max power potentiometer. Moar info at this link: http://donsthings.blogspot.com/2017/01/k40-lps-configuration-and-wiring.html

Here's how the current pinout of the laser power supply (often just called LPS) is laid out.

Pin use Laser tube negative Case/Mains ground AC1 AC2 Signal Ground Water Protection "Switch Light Control" (active low) Signal Ground Control Signal (Via potentiometer or PWM 0-5v) 5v output 24v output DC power ground 5v output "Switch Light Control" (active low)
Possible Labels L- G, FG AC AC G P, WP L G IN 5V 24V G 5V L
Extra notes Case/Mains ground Doesn't matter which is live/neutral Doesn't matter which is live/neutral Signal Ground Short signal ground to WP to bypass water protection. Won't fire if not grounded. Use a discrete not gate to signal from an arduino, laser turns on with 0v, off with 5v. stays off with floating pin Signal Ground potentiometer or PWM 0-5v Probably only meant to be used with IN and adjacent Gnd for potentiometer control. for stepper motors, usually 2-4A max DC power ground Usually 1A max Use a discrete not gate to signal from an arduino, laser turns on with 0v, off with 5v. stays off with floating pin

Link to the EBAY page for the current LPS:

https://www.ebay.com/itm/110-220V-40W-CO2-Laser-Power-Supply-Engraving-Engraver-Cutter-Machine/302659966406?epid=1773715012&hash=item4677f095c6:g:o-wAAOSw18xanYWm:rk:3:pf:0

CO2 laser power supply pinout

Specification

   Maximum output voltage: DC 25KV
   Maximum output current: DC 20mA

Software


This laser cutter can work with any grbl compatible software, the most common being LaserWeb and Lasergrbl, though others exist, since it's runs on Gcode. As of just getting the machine working lasergrbl seems to be the more approachable software.

Software/Firmware considerations


GRBL is fantastic for controlling CNC, 3D printer, and laser cutter hardware, but it's default uses aren't laser cutters. things with spindles and extruders are what it expects to use by default. To that end you have to edit some stuff to make it understand it's part of a laser cutter.

GRBL firmware: before you upload grbl to an arduino uno (it only works on the uno), you need to edit a couple things to make it play nicely as a laser cutter. (insert stuff from ACRO link in research links for config.h edits)

GRBL settings: Once GRBL has been loaded onto the arduino and you can talk to it on the serial monitor send it the following commands: $32=1 (this tells it to be a laser cutter) $100=83 (X axis motor steps/mm of distance moved) $101=83 (y axis motor steps/mm of distance moved)

Software settings: (insert bed size)

Research Links


https://www.youtube.com/watch?v=1ioctbN9JV8&t=335s

https://github.com/synthetos/grblShield/wiki/Using-grblShield

https://github.com/LaserWeb/deprecated-LaserWeb3/wiki/Firmware:-GRBL-1.1

https://openbuilds.com/builds/k40-acro-conversion.6592/